1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
|
{-# LANGUAGE TemplateHaskell #-}
{-# OPTIONS_GHC -Wno-orphans #-}
module Parser (
parseTestFile,
) where
import Control.Lens (Lens', makeLenses, (^.), (.~))
import Control.Monad.Combinators.Expr
import Control.Monad.State
import Data.Char
import Data.Maybe
import Data.Set (Set)
import qualified Data.Set as S
import Data.Text (Text)
import Data.Text qualified as T
import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.IO as TL
import Data.Typeable
import Data.Void
import Generics.Deriving.Base (Generic, Rep, U1(..), M1(..), K1(..), (:*:)(..))
import Generics.Deriving.Base qualified as G
import Text.Megaparsec hiding (State)
import Text.Megaparsec.Char
import qualified Text.Megaparsec.Char.Lexer as L
import System.Exit
import Test
type TestParser = ParsecT Void TestStream (State TestParserState)
type TestStream = TL.Text
data TestParserState = TestParserState
{ testProcs :: Set ProcName
, testVars :: [(VarName, SomeExprType)]
}
data SomeExprType = forall a. ExprType a => SomeExprType (Proxy a)
someEmptyVar :: SomeExprType -> SomeVarValue
someEmptyVar (SomeExprType (Proxy :: Proxy a)) = SomeVarValue $ emptyVarValue @a
instance MonadEval TestParser where
lookupVar (VarName [_, ip]) | ip == T.pack "ip" = return $ SomeVarValue T.empty
lookupVar name = maybe (fail $ "variable not in scope: '" ++ unpackVarName name ++ "'") (return . someEmptyVar) =<< gets (lookup name . testVars)
skipLineComment :: TestParser ()
skipLineComment = L.skipLineComment $ TL.pack "#"
scn :: TestParser ()
scn = L.space space1 skipLineComment empty
sc :: TestParser ()
sc = L.space (void $ takeWhile1P Nothing f) skipLineComment empty
where f x = x == ' ' || x == '\t'
wordChar :: TestParser (Token TestStream)
wordChar = alphaNumChar <|> char '_'
lexeme :: TestParser a -> TestParser a
lexeme = L.lexeme sc
symbol :: String -> TestParser ()
symbol = void . L.symbol sc . TL.pack
wsymbol :: String -> TestParser ()
wsymbol str = void $ lexeme $ string (TL.pack str) <* notFollowedBy wordChar
toplevel :: TestParser a -> TestParser a
toplevel = L.nonIndented scn
block :: (a -> [b] -> TestParser c) -> TestParser a -> TestParser b -> TestParser c
block merge header item = L.indentBlock scn $ do
h <- header
choice
[ do try $ void $ lexeme $ char ':'
return $ L.IndentSome Nothing (merge h) item
, L.IndentNone <$> merge h []
]
listOf :: TestParser a -> TestParser [a]
listOf item = do
x <- item
(x:) <$> choice [ symbol "," >> listOf item, return [] ]
nodeName :: TestParser NodeName
nodeName = label "network node name" $ lexeme $ do
c <- lowerChar
cs <- takeWhileP Nothing (\x -> isAlphaNum x || x == '_' || x == '-')
return $ NodeName $ TL.toStrict (c `TL.cons` cs)
procName :: TestParser ProcName
procName = label "process name" $ lexeme $ do
c <- lowerChar
cs <- takeWhileP Nothing (\x -> isAlphaNum x || x == '_' || x == '-')
return $ ProcName $ TL.toStrict (c `TL.cons` cs)
identifier :: TestParser Text
identifier = do
lexeme $ TL.toStrict <$> takeWhile1P Nothing (\x -> isAlphaNum x || x == '_')
varName :: TestParser VarName
varName = lexeme $ do
VarName . T.splitOn (T.singleton '.') . TL.toStrict <$>
takeWhile1P Nothing (\x -> isAlphaNum x || x == '_' || x == '.')
newVarName :: forall a proxy. ExprType a => proxy a -> TestParser VarName
newVarName proxy = do
name <- VarName . (:[]) <$> identifier
addVarName proxy name
return name
addVarName :: forall a proxy. ExprType a => proxy a -> VarName -> TestParser ()
addVarName _ name = do
gets (lookup name . testVars) >>= \case
Just _ -> fail $ "variable '" ++ unpackVarName name ++ "' already exists"
Nothing -> return ()
modify $ \s -> s { testVars = (name, SomeExprType @a Proxy) : testVars s }
someExpansion :: TestParser SomeExpr
someExpansion = do
void $ char '$'
choice
[do name <- VarName . (:[]) . TL.toStrict <$> takeWhile1P Nothing (\x -> isAlphaNum x || x == '_')
SomeVarValue (_ :: a) <- lookupVar name
return $ SomeExpr $ Variable @a name
, between (char '{') (char '}') someExpr
]
stringExpansion :: Text -> TestParser (Expr Text)
stringExpansion tname = do
off <- stateOffset <$> getParserState
SomeExpr e <- someExpansion
let err = parseError $ FancyError off $ S.singleton $ ErrorFail $ T.unpack $ T.concat
[ tname, T.pack " expansion not defined for '", textExprType e, T.pack "'" ]
maybe err return $ listToMaybe $ catMaybes
[ cast e
, UnOp (T.pack . show @Integer) <$> cast e
]
integerLiteral :: TestParser (Expr Integer)
integerLiteral = Literal . read . TL.unpack <$> takeWhile1P (Just "integer") isDigit
quotedString :: TestParser (Expr Text)
quotedString = label "string" $ lexeme $ do
void $ char '"'
let inner = choice
[ char '"' >> return []
, takeWhile1P Nothing (`notElem` "\"\\$") >>= \s -> (Literal (TL.toStrict s):) <$> inner
,do void $ char '\\'
c <- choice
[ char '\\' >> return '\\'
, char '"' >> return '"'
, char '$' >> return '$'
, char 'n' >> return '\n'
, char 'r' >> return '\r'
, char 't' >> return '\t'
]
(Literal (T.singleton c) :) <$> inner
,do e <- stringExpansion (T.pack "string")
(e:) <$> inner
]
Concat <$> inner
regex :: TestParser (Expr Regex)
regex = label "regular expression" $ lexeme $ do
void $ char '/'
let inner = choice
[ char '/' >> return []
, takeWhile1P Nothing (`notElem` "/\\$") >>= \s -> (Literal (TL.toStrict s) :) <$> inner
,do void $ char '\\'
s <- choice
[ char '/' >> return (Literal $ T.singleton '/')
, anySingle >>= \c -> return (Literal $ T.pack ['\\', c])
]
(s:) <$> inner
,do e <- stringExpansion (T.pack "regex")
(e:) <$> inner
]
expr <- Regex <$> inner
_ <- eval expr -- test regex parsing with empty variables
return expr
data SomeExpr = forall a. ExprType a => SomeExpr (Expr a)
data SomeUnOp = forall a b. (ExprType a, ExprType b) => SomeUnOp (a -> b)
applyUnOp :: forall a b sa.
(ExprType a, ExprType b, ExprType sa) =>
(a -> b) -> Expr sa -> Maybe (Expr b)
applyUnOp op x = do
Refl :: a :~: sa <- eqT
return $ UnOp op x
data SomeBinOp = forall a b c. (ExprType a, ExprType b, ExprType c) => SomeBinOp (a -> b -> c)
applyBinOp :: forall a b c sa sb.
(ExprType a, ExprType b, ExprType c, ExprType sa, ExprType sb) =>
(a -> b -> c) -> Expr sa -> Expr sb -> Maybe (Expr c)
applyBinOp op x y = do
Refl :: a :~: sa <- eqT
Refl :: b :~: sb <- eqT
return $ BinOp op x y
someExpr :: TestParser SomeExpr
someExpr = join inner <?> "expression"
where
inner = makeExprParser term table
parens = between (symbol "(") (symbol ")")
term = parens inner <|> literal <|> variable <?> "term"
table = [ [ prefix "-" $ [ SomeUnOp (negate @Integer) ]
]
, [ binary "*" $ [ SomeBinOp ((*) @Integer) ]
, binary "/" $ [ SomeBinOp (div @Integer) ]
]
, [ binary "+" $ [ SomeBinOp ((+) @Integer) ]
, binary "-" $ [ SomeBinOp ((-) @Integer) ]
]
, [ binary "==" $ [ SomeBinOp ((==) @Integer)
, SomeBinOp ((==) @Text)
]
, binary "/=" $ [ SomeBinOp ((/=) @Integer)
, SomeBinOp ((/=) @Text)
]
]
]
prefix :: String -> [SomeUnOp] -> Operator TestParser (TestParser SomeExpr)
prefix name ops = Prefix $ do
off <- stateOffset <$> getParserState
void $ symbol name
return $ \p -> do
SomeExpr e <- p
let err = parseError $ FancyError off $ S.singleton $ ErrorFail $ T.unpack $ T.concat
[T.pack "operator '", T.pack name, T.pack "' not defined for '", textExprType e, T.pack "'"]
maybe err return $ listToMaybe $ catMaybes $ map (\(SomeUnOp op) -> SomeExpr <$> applyUnOp op e) ops
binary :: String -> [SomeBinOp] -> Operator TestParser (TestParser SomeExpr)
binary name ops = InfixL $ do
off <- stateOffset <$> getParserState
void $ symbol name
return $ \p q -> do
SomeExpr e <- p
SomeExpr f <- q
let err = parseError $ FancyError off $ S.singleton $ ErrorFail $ T.unpack $ T.concat
[T.pack "operator '", T.pack name, T.pack "' not defined for '", textExprType e, T.pack "' and '", textExprType f, T.pack "'"]
maybe err return $ listToMaybe $ catMaybes $ map (\(SomeBinOp op) -> SomeExpr <$> applyBinOp op e f) ops
literal = label "literal" $ choice
[ return . SomeExpr <$> integerLiteral
, return . SomeExpr <$> quotedString
]
variable = label "variable" $ do
name <- varName
SomeVarValue (_ :: a) <- lookupVar name
return $ return $ SomeExpr $ Variable @a name
typedExpr :: forall a. ExprType a => TestParser (Expr a)
typedExpr = do
off <- stateOffset <$> getParserState
SomeExpr e <- someExpr
let err = parseError $ FancyError off $ S.singleton $ ErrorFail $ T.unpack $ T.concat
[ T.pack "expected '", textExprType @a Proxy, T.pack "', expression has type '", textExprType e, T.pack "'" ]
maybe err return $ cast e
class GInit f where ginit :: f x
instance GInit U1 where ginit = U1
instance GInit (K1 i (Maybe a)) where ginit = K1 Nothing
instance GInit f => GInit (M1 i c f) where ginit = M1 ginit
instance (GInit f, GInit h) => GInit (f :*: h) where ginit = ginit :*: ginit
data Param a = forall b. Param String (Lens' a (Maybe b)) (TestParser b)
getSourceLine :: TestParser SourceLine
getSourceLine = do
pstate <- statePosState <$> getParserState
return $ SourceLine $ T.concat
[ T.pack $ sourcePosPretty $ pstateSourcePos pstate
, T.pack ": "
, TL.toStrict $ TL.takeWhile (/='\n') $ pstateInput pstate
]
letStatement :: TestParser [TestStep]
letStatement = do
line <- getSourceLine
wsymbol "let"
name <- VarName . (:[]) <$> identifier
symbol "="
SomeExpr (e :: Expr a) <- someExpr
void $ eol
addVarName @a Proxy name
return [Let line name e]
command :: (Generic b, GInit (Rep b)) => String -> [Param b] -> (SourceLine -> b -> TestParser a) -> TestParser [a]
command name params fin = do
origline <- getSourceLine
wsymbol name
let blockHelper line prev cur = L.indentBlock scn $ helper line prev cur
helper line prev cur = choice $ concat
[[ do void $ eol
L.IndentNone . (:[]) <$> fin line cur
]
,[ do void $ lexeme (char ':')
return $ L.IndentSome Nothing (return . concat) $ do
line' <- getSourceLine
blockHelper line' prev cur
]
, flip map params $ \(Param sym l p) -> do
x <- if null sym
then do
x <- p
when (any null prev) $ do
fail $ "multiple unnamed parameters"
return x
else do
wsymbol sym
when (any (== sym) prev) $ do
fail $ "multiple '" ++ sym ++ "' parameters"
p
helper line (sym:prev) (l .~ Just x $ cur)
]
blockHelper origline [] (G.to ginit)
data SpawnBuilder = SpawnBuilder
{ _spawnBuilderProc :: Maybe ProcName
, _spawnBuilderNode :: Maybe NodeName
}
deriving (Generic)
makeLenses ''SpawnBuilder
testSpawn :: TestParser [TestStep]
testSpawn = command "spawn"
[ Param "on" spawnBuilderNode nodeName
, Param "as" spawnBuilderProc procName
] $ \_ b -> Spawn
<$> (maybe (fail "missing 'as' <proc>") return $ b ^. spawnBuilderProc)
<*> (maybe (fail "missing 'on' <node>") return $ b ^. spawnBuilderNode)
data SendBuilder = SendBuilder
{ _sendBuilderProc :: Maybe ProcName
, _sendBuilderLine :: Maybe (Expr Text)
}
deriving (Generic)
makeLenses ''SendBuilder
testSend :: TestParser [TestStep]
testSend = command "send"
[ Param "to" sendBuilderProc procName
, Param "" sendBuilderLine quotedString
] $ \_ b -> Send
<$> (maybe (fail "missing 'to' <proc>") return $ b ^. sendBuilderProc)
<*> (maybe (fail "missing line to send") return $ b ^. sendBuilderLine)
data ExpectBuilder = ExpectBuilder
{ _expectBuilderProc :: Maybe ProcName
, _expectBuilderRegex :: Maybe (Expr Regex)
, _expectBuilderCaptures :: Maybe [VarName]
}
deriving (Generic)
makeLenses ''ExpectBuilder
testExpect :: TestParser [TestStep]
testExpect = command "expect"
[ Param "from" expectBuilderProc procName
, Param "" expectBuilderRegex regex
, Param "capture" expectBuilderCaptures (listOf $ newVarName @Text Proxy)
] $ \s b -> Expect s
<$> (maybe (fail "missing 'from' <proc>") return $ b ^. expectBuilderProc)
<*> (maybe (fail "missing regex to match") return $ b ^. expectBuilderRegex)
<*> (maybe (return []) return $ b ^. expectBuilderCaptures)
data GuardBuilder = GuardBuilder
{ _guardBuilderExpr :: Maybe (Expr Bool)
}
deriving (Generic)
makeLenses ''GuardBuilder
testGuard :: TestParser [TestStep]
testGuard = command "guard"
[ Param "" guardBuilderExpr typedExpr
] $ \s b -> Guard s
<$> (maybe (fail "missing guard expression") return $ b ^. guardBuilderExpr)
testWait :: TestParser [TestStep]
testWait = do
wsymbol "wait"
return [Wait]
parseTestDefinition :: TestParser Test
parseTestDefinition = label "test definition" $ toplevel $ do
block (\name steps -> return $ Test name $ concat steps) header $ choice
[ letStatement
, testSpawn
, testSend
, testExpect
, testGuard
, testWait
]
where header = do
wsymbol "test"
lexeme $ TL.toStrict <$> takeWhileP (Just "test name") (/=':')
parseTestDefinitions :: TestParser [Test]
parseTestDefinitions = do
tests <- many parseTestDefinition
eof
return tests
parseTestFile :: FilePath -> IO [Test]
parseTestFile path = do
content <- TL.readFile path
let initState = TestParserState
{ testProcs = S.empty
, testVars = []
}
case evalState (runParserT parseTestDefinitions path content) initState of
Left err -> putStr (errorBundlePretty err) >> exitFailure
Right tests -> return tests
|