1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
module Parser.Expr (
identifier,
varName,
newVarName,
addVarName,
someExpr,
typedExpr,
literal,
variable,
checkFunctionArguments,
functionArguments,
) where
import Control.Applicative (liftA2)
import Control.Monad.Combinators.Expr
import Control.Monad
import Control.Monad.State
import Data.Char
import Data.Map qualified as M
import Data.Maybe
import Data.Scientific
import Data.Set qualified as S
import Data.Text (Text)
import Data.Text qualified as T
import Data.Text.Lazy qualified as TL
import Data.Typeable
import Data.Void
import Text.Megaparsec hiding (State)
import Text.Megaparsec.Char
import Text.Megaparsec.Char.Lexer qualified as L
import Text.Regex.TDFA qualified as RE
import Text.Regex.TDFA.Text qualified as RE
import Parser.Core
import Test
identifier :: TestParser Text
identifier = label "identifier" $ do
lexeme $ do
lead <- lowerChar
rest <- takeWhileP Nothing (\x -> isAlphaNum x || x == '_')
return $ TL.toStrict $ TL.fromChunks $ (T.singleton lead :) $ TL.toChunks rest
varName :: TestParser VarName
varName = label "variable name" $ VarName <$> identifier
newVarName :: forall a. ExprType a => TestParser (TypedVarName a)
newVarName = do
off <- stateOffset <$> getParserState
name <- TypedVarName <$> varName
addVarName off name
return name
addVarName :: forall a. ExprType a => Int -> TypedVarName a -> TestParser ()
addVarName off (TypedVarName name) = do
gets (lookup name . testVars) >>= \case
Just _ -> registerParseError $ FancyError off $ S.singleton $ ErrorFail $ T.unpack $
T.pack "variable '" <> textVarName name <> T.pack "' already exists"
Nothing -> return ()
modify $ \s -> s { testVars = ( name, ExprTypePrim @a Proxy ) : testVars s }
someExpansion :: TestParser SomeExpr
someExpansion = do
void $ char '$'
choice
[do off <- stateOffset <$> getParserState
sline <- getSourceLine
name <- VarName . TL.toStrict <$> takeWhile1P Nothing (\x -> isAlphaNum x || x == '_')
lookupVarExpr off sline name
, between (char '{') (char '}') someExpr
]
stringExpansion :: ExprType a => Text -> (forall b. ExprType b => Expr b -> [Maybe (Expr a)]) -> TestParser (Expr a)
stringExpansion tname conv = do
off <- stateOffset <$> getParserState
SomeExpr e <- someExpansion
let err = do
registerParseError $ FancyError off $ S.singleton $ ErrorFail $ T.unpack $ T.concat
[ tname, T.pack " expansion not defined for '", textExprType e, T.pack "'" ]
return $ Undefined "expansion not defined for type"
maybe err return $ listToMaybe $ catMaybes $ conv e
numberLiteral :: TestParser SomeExpr
numberLiteral = label "number" $ lexeme $ do
x <- L.scientific
choice
[ return (SomeExpr $ Pure (x / 100)) <* void (char ('%'))
, if base10Exponent x == 0
then return $ SomeExpr $ Pure (coefficient x)
else return $ SomeExpr $ Pure x
]
quotedString :: TestParser (Expr Text)
quotedString = label "string" $ lexeme $ do
void $ char '"'
let inner = choice
[ char '"' >> return []
, takeWhile1P Nothing (`notElem` ['\"', '\\', '$']) >>= \s -> (Pure (TL.toStrict s):) <$> inner
,do void $ char '\\'
c <- choice
[ char '\\' >> return '\\'
, char '"' >> return '"'
, char '$' >> return '$'
, char 'n' >> return '\n'
, char 'r' >> return '\r'
, char 't' >> return '\t'
]
(Pure (T.singleton c) :) <$> inner
,do e <- stringExpansion (T.pack "string") $ \e ->
[ cast e
, fmap (T.pack . show @Integer) <$> cast e
, fmap (T.pack . show @Scientific) <$> cast e
]
(e:) <$> inner
]
Concat <$> inner
regex :: TestParser (Expr Regex)
regex = label "regular expression" $ lexeme $ do
off <- stateOffset <$> getParserState
void $ char '/'
let inner = choice
[ char '/' >> return []
, takeWhile1P Nothing (`notElem` ['/', '\\', '$']) >>= \s -> (Pure (RegexPart (TL.toStrict s)) :) <$> inner
,do void $ char '\\'
s <- choice
[ char '/' >> return (Pure $ RegexPart $ T.singleton '/')
, anySingle >>= \c -> return (Pure $ RegexPart $ T.pack ['\\', c])
]
(s:) <$> inner
,do e <- stringExpansion (T.pack "regex") $ \e ->
[ cast e
, fmap RegexString <$> cast e
, fmap (RegexString . T.pack . show @Integer) <$> cast e
, fmap (RegexString . T.pack . show @Scientific) <$> cast e
]
(e:) <$> inner
]
parts <- inner
let testEval = \case
Pure (RegexPart p) -> p
_ -> ""
case RE.compile RE.defaultCompOpt RE.defaultExecOpt $ T.concat $ map testEval parts of
Left err -> registerParseError $ FancyError off $ S.singleton $ ErrorFail $ T.unpack $ T.concat
[ "failed to parse regular expression: ", T.pack err ]
Right _ -> return ()
return $ Regex parts
list :: TestParser SomeExpr
list = label "list" $ do
symbol "["
SomeExpr x <- someExpr
let enumErr off = parseError $ FancyError off $ S.singleton $ ErrorFail $ T.unpack $
"list range enumeration not defined for '" <> textExprType x <> "'"
let exprList = foldr (liftA2 (:)) (Pure [])
SomeExpr <$> choice
[do symbol "]"
return $ exprList [x]
,do off <- stateOffset <$> getParserState
osymbol ".."
ExprEnumerator fromTo _ <- maybe (enumErr off) return $ exprEnumerator x
y <- typedExpr
symbol "]"
return $ fromTo <$> x <*> y
,do symbol ","
y <- typedExpr
choice
[do symbol "]"
return $ exprList [x, y]
,do off <- stateOffset <$> getParserState
osymbol ".."
ExprEnumerator _ fromThenTo <- maybe (enumErr off) return $ exprEnumerator x
z <- typedExpr
symbol "]"
return $ fromThenTo <$> x <*> y <*> z
,do symbol ","
xs <- listOf typedExpr
symbol "]"
return $ exprList (x:y:xs)
]
]
data SomeUnOp = forall a b. (ExprType a, ExprType b) => SomeUnOp (a -> b)
applyUnOp :: forall a b sa.
(ExprType a, ExprType b, ExprType sa) =>
Int -> (a -> b) -> Expr sa -> TestParser (Expr b)
applyUnOp off op x = do
x' <- unifyExpr off (Proxy @a) x
return $ op <$> x'
data SomeBinOp = forall a b c. (ExprType a, ExprType b, ExprType c) => SomeBinOp (a -> b -> c)
applyBinOp :: forall a b c sa sb.
(ExprType a, ExprType b, ExprType c, ExprType sa, ExprType sb) =>
Int -> (a -> b -> c) -> Expr sa -> Expr sb -> TestParser (Expr c)
applyBinOp off op x y = do
x' <- unifyExpr off (Proxy @a) x
y' <- unifyExpr off (Proxy @b) y
return $ op <$> x' <*> y'
someExpr :: TestParser SomeExpr
someExpr = join inner <?> "expression"
where
inner = makeExprParser term table
parens = between (symbol "(") (symbol ")")
term = label "term" $ choice
[ parens inner
, return <$> literal
, return <$> variable
]
table = [ [ prefix "-" $ [ SomeUnOp (negate @Integer)
, SomeUnOp (negate @Scientific)
]
]
, [ binary "*" $ [ SomeBinOp ((*) @Integer)
, SomeBinOp ((*) @Scientific)
]
{- TODO: parsing issues with regular expressions
, binary "/" $ [ SomeBinOp (div @Integer)
, SomeBinOp ((/) @Scientific)
]
-}
]
, [ binary "+" $ [ SomeBinOp ((+) @Integer)
, SomeBinOp ((+) @Scientific)
]
, binary "-" $ [ SomeBinOp ((-) @Integer)
, SomeBinOp ((-) @Scientific)
]
]
, [ binary' "==" (\op xs ys -> length xs == length ys && and (zipWith op xs ys)) $
[ SomeBinOp ((==) @Integer)
, SomeBinOp ((==) @Scientific)
, SomeBinOp ((==) @Text)
]
, binary' "/=" (\op xs ys -> length xs /= length ys || or (zipWith op xs ys)) $
[ SomeBinOp ((/=) @Integer)
, SomeBinOp ((/=) @Scientific)
, SomeBinOp ((/=) @Text)
]
, binary ">" $
[ SomeBinOp ((>) @Integer)
, SomeBinOp ((>) @Scientific)
]
, binary ">=" $
[ SomeBinOp ((>=) @Integer)
, SomeBinOp ((>=) @Scientific)
]
, binary "<=" $
[ SomeBinOp ((<=) @Integer)
, SomeBinOp ((<=) @Scientific)
]
, binary "<" $
[ SomeBinOp ((<) @Integer)
, SomeBinOp ((<) @Scientific)
]
]
]
prefix :: String -> [SomeUnOp] -> Operator TestParser (TestParser SomeExpr)
prefix name ops = Prefix $ do
off <- stateOffset <$> getParserState
void $ osymbol name
return $ \p -> do
SomeExpr e <- p
let err = FancyError off $ S.singleton $ ErrorFail $ T.unpack $ T.concat
[T.pack "operator '", T.pack name, T.pack "' not defined for '", textExprType e, T.pack "'"]
region (const err) $
choice $ map (\(SomeUnOp op) -> SomeExpr <$> applyUnOp off op e) ops
binary :: String -> [SomeBinOp] -> Operator TestParser (TestParser SomeExpr)
binary name = binary' name (undefined :: forall a b. (a -> b -> Void) -> [a] -> [b] -> Integer)
-- use 'Void' that can never match actually used type to disable recursion
binary' :: forall c c'. (Typeable c, ExprType c')
=> String
-> (forall a b. (a -> b -> c) -> [a] -> [b] -> c')
-> [SomeBinOp]
-> Operator TestParser (TestParser SomeExpr)
binary' name listmap ops = InfixL $ do
off <- stateOffset <$> getParserState
void $ osymbol name
return $ \p q -> do
SomeExpr e <- p
SomeExpr f <- q
let eqT' :: forall r s t. (Typeable r, Typeable s, Typeable t) => (r -> s -> t) -> Maybe ((r -> s -> t) :~: (r -> s -> c))
eqT' _ = eqT
let proxyOf :: proxy a -> Proxy a
proxyOf _ = Proxy
let err = FancyError off $ S.singleton $ ErrorFail $ T.unpack $ T.concat
[T.pack "operator '", T.pack name, T.pack "' not defined for '", textExprType e, T.pack "' and '", textExprType f, T.pack "'"]
let tryop :: forall a b d sa sb.
(ExprType a, ExprType b, ExprType d, ExprType sa, ExprType sb) =>
(a -> b -> d) -> Proxy sa -> Proxy sb -> TestParser SomeExpr
tryop op pe pf = foldl1 (<|>) $
[ SomeExpr <$> applyBinOp off op e f
, do Refl <- maybe (parseError err) return $ eqT' op
ExprListUnpacker _ une <- maybe (parseError err) return $ exprListUnpacker pe
ExprListUnpacker _ unf <- maybe (parseError err) return $ exprListUnpacker pf
tryop (listmap op) (une pe) (unf pf)
]
region (const err) $
foldl1 (<|>) $ map (\(SomeBinOp op) -> tryop op (proxyOf e) (proxyOf f)) ops
typedExpr :: forall a. ExprType a => TestParser (Expr a)
typedExpr = do
off <- stateOffset <$> getParserState
SomeExpr e <- someExpr
unifyExpr off Proxy e
literal :: TestParser SomeExpr
literal = label "literal" $ choice
[ numberLiteral
, SomeExpr <$> quotedString
, SomeExpr <$> regex
, list
]
variable :: TestParser SomeExpr
variable = label "variable" $ do
off <- stateOffset <$> getParserState
sline <- getSourceLine
name <- varName
lookupVarExpr off sline name >>= \case
SomeExpr e'@(FunVariable argTypes _ _) -> do
let check = checkFunctionArguments argTypes
args <- functionArguments check someExpr literal (\poff -> lookupVarExpr poff sline . VarName)
return $ SomeExpr $ ArgsApp args e'
e -> do
recordSelector e <|> return e
where
recordSelector :: SomeExpr -> TestParser SomeExpr
recordSelector (SomeExpr e) = do
void $ osymbol "."
off <- stateOffset <$> getParserState
m <- identifier
let err = parseError $ FancyError off $ S.singleton $ ErrorFail $ T.unpack $ T.concat
[ T.pack "value of type ", textExprType e, T.pack " does not have member '", m, T.pack "'" ]
e' <- maybe err return $ applyRecordSelector m e <$> lookup m recordMembers
recordSelector e' <|> return e'
applyRecordSelector :: ExprType a => Text -> Expr a -> RecordSelector a -> SomeExpr
applyRecordSelector m e (RecordSelector f) = SomeExpr $ App (AnnRecord m) (pure f) e
checkFunctionArguments :: FunctionArguments SomeArgumentType
-> Int -> Maybe ArgumentKeyword -> SomeExpr -> TestParser SomeExpr
checkFunctionArguments (FunctionArguments argTypes) poff kw expr = do
case M.lookup kw argTypes of
Just (SomeArgumentType (_ :: ArgumentType expected)) -> do
withRecovery registerParseError $ do
void $ unify poff (ExprTypePrim (Proxy @expected)) (someExprType expr)
return expr
Nothing -> do
registerParseError $ FancyError poff $ S.singleton $ ErrorFail $ T.unpack $
case kw of
Just (ArgumentKeyword tkw) -> "unexpected parameter with keyword `" <> tkw <> "'"
Nothing -> "unexpected parameter"
return expr
functionArguments :: (Int -> Maybe ArgumentKeyword -> a -> TestParser b) -> TestParser a -> TestParser a -> (Int -> Text -> TestParser a) -> TestParser (FunctionArguments b)
functionArguments check param lit promote = do
args <- parseArgs True
return $ FunctionArguments args
where
parseArgs allowUnnamed = choice
[do off <- stateOffset <$> getParserState
x <- pparam
if allowUnnamed
then do
checkAndInsert off Nothing x $ parseArgs False
else do
registerParseError $ FancyError off $ S.singleton $ ErrorFail $ T.unpack $ T.concat
[ T.pack "multiple unnamed parameters" ]
parseArgs False
,do off <- stateOffset <$> getParserState
x <- identifier
choice
[do off' <- stateOffset <$> getParserState
y <- pparam <|> (promote off' =<< identifier)
checkAndInsert off' (Just (ArgumentKeyword x)) y $ parseArgs allowUnnamed
,if allowUnnamed
then do
y <- promote off x
checkAndInsert off Nothing y $ return M.empty
else do
registerParseError $ FancyError off $ S.singleton $ ErrorFail $ T.unpack $ T.concat
[ T.pack "multiple unnamed parameters" ]
return M.empty
]
,do return M.empty
]
pparam = between (symbol "(") (symbol ")") param <|> lit
checkAndInsert off kw x cont = M.insert kw <$> check off kw x <*> cont
|